Evaluation of nitrogen removal from agricultural runoff via constructed wetlands

Ali Afrous 1, *, Shahram Goudarzi 2

1Department of Water Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
2Department of Soil Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran

Abstract: Constructed wetlands can be an important role in removing pollutants such as pesticides and nutrients special nitrogen from agricultural runoff. The primary benefit of vegetation in wetlands is its ability to reduce chemicals, organic and suspended solids, also another benefit is that the plant and associated litter layer provides natural habitat for beneficial microbial organisms. Aquatic plants treated polluted water by storing its nutrients in biomass. Recent studies have shown the importance of aquatic vegetation for removal nitrogen through wetlands and agricultural drainage ditches.

Key words: Nitrogen; Aquatic plants; Removal

1. Introduction

 Constructed wetlands are man-made systems, designed and constructed to treat wastewater using the natural processes typical of natural wetlands. These natural processes are an interaction and combination of wetland plants, soil and microbial life. Constructed wetlands can be classified according to the water flow regime: surface flow systems and subsurface flow systems. Constructed wetlands with subsurface flow may be classified according to the direction of flow into horizontal subsurface flow (HSSF) and vertical subsurface flow (VSSF). Vymazal (2001) classified constructed wetlands for treatment of domestic and industrial wastewaters, agricultural runoff and etc. in Table 1.

2. Processes of nitrogen removal in constructed wetlands

The dominant forms of nitrogen in wetlands that are of importance to wastewater treatment include organic nitrogen, ammonia, ammonium, nitrate, nitrite, and nitrogen gases. Inorganic forms are essential to plant growth in aquatic systems but if scarce can limit or control plant productivity. The physical processes of nitrogen cycling are settling and re-suspension, diffusion, plant translocation, litter fall, sorption and ammonia volatilization (Kadlec and Wallace, 2009). The five principal processes for nitrogen transformations in a wetland are (Kadlec and Wallace, 2009):

- Ammonization;
- Nitrification;
- Denitrification;
- Assimilation; and
- Decomposition.

There are some processes that affect in removal or retention of nitrogen in constructed wetlands from wastewater: NH3 volatilization, nitrification, DE nitrification, nitrogen fixation, plant and microbial uptake, mineralization (ammonification), nitrate reduction to ammonium (nitrate-ammonification), anaerobic ammonia oxidation (ANAMMOX), fragmentation, sorption, desorption, burial, and leaching.

3. Nitrogen removal from agricultural runoff via constructed wetlands

Nitrogenous and phosphorus compounds in agricultural runoff are important factors that causing eutrophication in water bodies; thus, it is important to control N levels from such sources. Therefore, removal or treatment of two nutrients before entering water bodies is essential. The nitrogen entering wetland systems can be measured as organic nitrogen, ammonia, nitrate and nitrite. Total Nitrogen refers to all nitrogen species. The removal
of nitrogen from wastewater is important because of ammonia's toxicity to fish if discharged into water courses.

Table 1: Nitrogen transformations in (constructed) wetlands (Vymazal, 2007)

<table>
<thead>
<tr>
<th>Process</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatilization</td>
<td>ammonia-N (aq) → ammonia-N (g)</td>
</tr>
<tr>
<td>Ammonification</td>
<td>organic-N → ammonia-N</td>
</tr>
<tr>
<td>Nitrification</td>
<td>ammonia-N → nitrate-N → nitrate-N</td>
</tr>
<tr>
<td>Nitrate-ammonification</td>
<td>nitrate-N → ammonia-N</td>
</tr>
<tr>
<td>Denitrification</td>
<td>nitrate-N → nitrite-N → gaseous N₂, N₂O</td>
</tr>
<tr>
<td>N₂ Fixation</td>
<td>gaseous N₂ → ammonia-N (organic-N)</td>
</tr>
<tr>
<td>Plant/microbial uptake (assimilation)</td>
<td>ammonia-, nitrite-, nitrate-N → organic-N</td>
</tr>
<tr>
<td>Ammonia adsorption</td>
<td></td>
</tr>
<tr>
<td>Organic nitrogen burial</td>
<td></td>
</tr>
<tr>
<td>ANAMMOX (anaerobic ammonia oxidation)</td>
<td>ammonia-N → gaseous N₂</td>
</tr>
</tbody>
</table>

Excessive levels of nitrates in drinking water are thought to cause methemoglobinemia in infants, which decreases the oxygen transport ability of the blood. In a review of 19 surface flow wetlands (US EPA, 1988) it was found that nearly all reduced total nitrogen. In a review of both surface flow and subsurface flow wetlands, Reed (1995) concluded that effluent nitrate concentration is dependent on maintaining anoxic conditions within the wetland so that DE nitrification can occur. He found that subsurface flow wetlands were superior to surface flow wetlands for nitrate removal. The 20 surface flow wetlands reviewed reported effluent nitrate levels below 5 mg/L; the 12 subsurface flow wetlands reviewed reported effluent nitrate ranging from <1 to < 10 mg/L.

Borin and Tocchetto (2007) reported the 5-year performance of a constructed surface-flow wetland in reducing diffuse N pollution coming from croplands, begun in 1998 in NE Italy. The 0.32-ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). A summary of the effectiveness of constructed wetlands to removal nitrogen from agricultural runoff for various studies is presented in Table 4 (the references upon which the range is based are given in the right column). Shaoyong et al. (2009) were studied the nitrogen distribution pathways, and the nitrogen species removal kinetics, of a free water surface constructed wetland (2,800 m²) in the Dianchi Valley, which has been in operation for 27 months. Results showed HRT had negative correction with both TN and ammonia removal, and the nitrate removal efficiency and parameters mentioned earlier were not significantly correlated.

4. Conclusion

Globally, irrigation and fertilization of agricultural lands is placing increasing pressure on water quality and availability. Dissolved nitrogen is lost from fields primarily as dissolved nitrate due to its highly soluble nature. It can be leached out through subsurface drains or overland as surface runoff. Constructed wetlands are an interesting way for targeting nutrient reduction nitrogen from agricultural runoff because the concept can be implemented in many different situations and built with materials available locally.

References


