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Bandwidth selection method for bias-reduced log-period gram estimator in decaying
spectral densityG.L.C. Yap *, K.W. Liew

Department of Applied Mathematics, the University of Nottingham Malaysia Campus, Semenyih, Malaysia

Abstract: Long-memory parameter estimation using bias-reduced log-period gram regression (BRLP) is provenefficient as it eliminates the first and higher order of biases of the (Geweke & Porter-Hudak, 1983) (GPH) estimator.Nonetheless, its performance relies largely on the frequency bandwidth and the order of estimation. Literaturesuggests a data-dependent plug-in method for selecting the frequency bandwidth that minimizes the asymptoticmean-squared error (MSE). The optimal rate of convergence to zero of the MSE is faster than that of the GPH and theother semi-parametric estimators when the normalized spectrum at zero is sufficiently smooth. However, thischoice of bandwidth significantly increases the MSE’s over the finite sample minimum MSEs due to the non-parametric estimation problem in the unknown term within the plug-in method. To obtain the optimum bandwidthin the decaying spectral density, this paper suggests an alternative approach that relies on spectral analysis, withthe idea of low pass filter applied in signal processing. Monte Carlo simulation results for stationary ARFIMA (1, d,0) processes show that the proposed method for the bandwidth selection perform well relative to the MSE optimalchoice of bandwidth,  and the estimation performance is improved with the sample size.
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1. Introduction

*Semi-parametric estimation procedures arecommon in the time series analysis of financialmeasurements sampled at high frequencies (Barroset al., 2014; Bollerslev et al., 2013; Garvey &Gallagher, 2013). Following these methods, the long-range characteristics (low frequency behavior) of thetime series can be estimated without the knowledgeof the short-range (high frequency) structure. One ofthe popular tools for long-memory estimation inempirical research is log-period gram regression(LP) proposed by (Geweke & Porter-Hudak, 1983;Robinson, 1995) (GPH) due to its simpleimplementation, pivotal asymptotic normality androbustness as a result of the local condition (Arteche& Orbe, 2009).The GPH estimator is the least squares estimateof the long memory parameter d,  in the regressionmodel that takes the first m harmonics of the loggedperiod gram against a simple function of Fourierfrequency. It has been criticized due to its finite-sample bias (Agiakloglou et al., 1993). To overcomethis, Andrews & Guggenberger (2003) proposed abias-reduced log-period gram estimator (BRLP) ,which is the same as except that it includesadditional regressors in the form of the Fourierfrequencies to the power 2k for = 1, … , , ∈ Ζ , inthe pseudo-regression model. The performance ofthe estimator is usually evaluated based on the meansquared error (MSE) or root mean-squared error
* Corresponding Author.

(RMSE), of which estimator with the minimal MSE(or RMSE) is preferred. The bandwidth m plays animportant role on the performance of . A largebandwidth reduces the variance at the cost ofincreased bias, and the estimates of the memoryparameter vary significantly with the choice of m. Tobalance the squared bias and variance, an optimalbandwidth, that is, an m value that minimizes theMSE or RMSE is sought.There are basically three approaches todetermine optimal bandwidth, namely the plug-inmethod that minimizes an asymptotic approximationof the MSE ( Hurvich & Deo, 1999), the adaptive LP(Giraitis, Robinson, & Samarov, 2000) that uses anadaptive LP that adapt to an unknown local to zerospectral smoothness, and a bootstrap-basedbandwidth choice (Arteche & Orbe, 2009) thatminimizes a bootstrap MSE. The adaptive LP methoddoes not produce optimal bandwidth but it onlyoffers bandwidths with optimal growth rate whichcan be changed arbitrarily, whilst the bootstrap-based method is rather tedious as the optimalbandwidth is obtained by searching for the minimumbootstrap MSE amongst the points within apredefined interval of bandwidths. The plug-inmethod is easy to implement but it is usually notadequate as it depends on unknowns to be estimated(Andrews & Guggenberger, 2003; Arteche, 2004;Delgado & Robinson, 1996; Henry & Robinson, 1996;Henry, 2001). This paper suggests an alternativeapproach to identify the optimum bandwidth for the
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long-memory parameter estimation using the BRLPestimator. This approach examines the long- andshort-range effect on the spectral density of whichoptimal bandwidth is determined such that theshort-range effect and the noise are filtered out. Thefollowing section reviews the BRLP model. Section 3considers the proposed method for the bandwidthselection. Section 4 provides a simulation study inthe finite sample, and section 5 offers the concludingremarks.
2. Literature reviewThe spectral density of a semi-parametric modelfor a stationary Gaussian long-memory time series{ : = 1, … , } in a neighborhood of zero frequencyis given by( ) = | | ∗( ) (1)Where d is the long-memory parameter and ∗(∙)is an even, positive continuous function on [− , ]with 0 < ∗(0) < ∞. It determines the highfrequencies properties of the series, relating to theshort-term correlation structure. A model that takesa fractional difference of order d, a -orderautoregressive and -order moving average,abbreviated as ARFIMA ( , , ) introduced byGranger & Joyeux (1980) and Hosking (1981) is aspecial case of long-range process satisfying Eq. (1).The long-memory parameter can be estimated usingthe first m (m < n) period grams in the log-periodgram regression proposed by Geweke & Porter-Hudak (1983) (GPH). Robinson (1995) writes thismodel in the form of Eq.(2).log ( ) = (log ∗(0) − ) + + log ∗∗(0)+ (2)Where= ∑ exp for = 1, … , ,= , = −2log , = log + , and= 0.577216 … is the Euler constant.The GPH estimator is the least squaresestimator of in the regression model Eq. (2). Thedominant bias comes from the term log ∗∗( ) . Toeliminate this bias term, regressors , ≥ 1, areadded to the pseudo-regression model Eq.(2), givingrise to the bias-reduced log-period gram regression(BRLP) (Andrews & Guggenberger, 2003). Assuming∗( ) is smooth of order at zero for some s ≥ 1BRLP is written in Eq.(3).log ( ) = (log ∗(0) − ) +

+ (2 )!, + + ,= 1, … , (3)Where= error term other than

0
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k[∙] is the greatest integer functionSimilar to the GPH estimator, is the leastsquares estimator of the coefficient on in theBRLP model. The problem of long-memoryparameter estimation lies in the uncertain number offrequencies needed to estimate the behavior of ∗( )for 0. The optimal choice of the bandwidthproposed by Andrews & Guggenberger (2003)(hence called AG method) is the m value thatminimizes the asymptotic MSE of . However, thismethod involves an unknown b2k that can only beestimated non-parametrically, and its rate ofconvergence is quite slow especially when > 0. Asa result, it may lead to a large MSE in . On the otherhand, there are other challenges in the bandwidthselection, especially when there is a sufficientdensity of individuals with close-to-unit-rootbehavior which produces an aggregate long memory(Robinson, 2003). Alternative to AG method,graphical method by Taqqu & Teverovsky (1996)seems reasonable. This method argues that at largebandwidth m, the estimates of are incorrect due tothe short-range effects. As m decreases, the short-range effects disappear and should represent thetrue long-memory dependence. Nonetheless, thiscauses instability in the estimates of due toinsufficient frequencies for the log-period gramregression. Hence, the optimum bandwidth isidentified as a point from the flat region in the plot ofagainst m. Unfortunately, as argued by Henry(2001), the flat region in the plot is not alwaysobvious. As such, to overcome these difficulties, amore efficient approach for the data-dependentchoice of bandwidth is desired.
3. Bandwidth selection for BRLP using the
spectral analysis and low pass filterThis paper suggests collecting the Fourierfrequencies near the origin that have significantspectrum. The spectrum of a time series is thedistribution of variance of the series as a function offrequency (Chatfield, 2004). A peak in the spectrumrepresents relatively high variance in the respectivefrequency band, whilst frequencies with smallspectrum contain no significant signal and a flatspectrum indicates that the variance is evenlydistributed over the frequencies. A time series withlong-range characteristic has positiveautocorrelation with low-frequency spectrum, whichmeans the spectral density has a decaying patternwith the variance tends to be higher at the lowfrequencies. Hence, an appropriate amount of lowfrequencies need to be determined for such thatthe frequency band contains sufficient informationfor the long-range characteristic, yet it is notcontaminated with the signals from the short-memory traits.To improve the spectral estimation, this paperuses the average modified period gram ( ) (Welch,
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1967) to estimate the spectral density. For real-valued time series, ( ) is produced with afrequency resolution of , where =max{256, the next power of 2 greater than the lengthof the segments}. In other words, spectral density isestimated by ( ), = 0,1, … , , where = .( ) is used to identify the frequency band close toorigin that contains large spectrums so thatsufficient information can be assembled for in theBRLP model.As long-memory parameter determines the lowfrequencies properties of a series, this paperproposes the use of a low pass filter (Van de Vegte,2002). This requires a cutoff frequency to beidentified, and all frequencies of the input signal inthe interval | | ≤ are passed with equal gain andall the frequencies outside this interval (which arerelated to the short-term correlation structure) arecompletely filtered out (Shenoi, 2006).  As such, theaccuracy of relies heavily on the choice of thecutoff frequency. The procedure to identify the cutofffrequency is detailed below.Working on ( ), the procedure begins with anarbitrary potential optimum frequency . Based onthe remark by Qu (2011), frequencies in theneighborhood of √ suggest the possibility ofdistinguishing between the true and the spurious

long-memory from the spectral domain. This leads tosetting a potential stop point = √ , whichcorresponds to bandwidth = √ suggested byGeweke & Porter-Hudak (1983). Working fromand regress up to − 5, the cutoff frequency isdetermined as the first frequency that exceeds theminimum criteria, = min{ ( )} +
k*range{ ( )}, = − 5, … , , where k is aproportion factor. As the spectral density of a long-memory process is a decreasing function, this issomewhat equivalent to discarding the signal thathas less than k% of the information of the longmemory process. This rule seems reasonable to givean appropriate cutoff frequency, as the error in thelog-period gram regression increases for frequenciesfar from origin. However, following Arteche & Orbe(2009), it is noted that the enlargement of the erroris significant when the characteristic polynomial ofthe autoregressive (AR) process has a root that isclose to unity. This indicates that some interventionto this rule is needed. As these cases are associatedwith slow decaying auto-correlation and monotonicdecaying spectral density, the characteristics in ACFand ( ) plots need to be identified. An interaction oflong memory parameter ( ) and the AR parameter( ) gives the characteristics as described in

Table 1.
Table 1: Characteristics in ACF and ( ) due to the parameters and

The auto-correlation in a rapid decaying ACFconverges to zero after a few low-order lags but avery slow decaying ACF is likely to have significantauto-correlations even after 10 lags. By checking onthe ACF up to 20 lags, we define an ACF as very slowdecay if none of the auto-correlations is less than1.1*standard error of the ACF. The process withpossibly large can be identified as the one thatdepicts rather a monotonic decay, that is, most of thedifferences between the consecutive auto-correlations − , = 2, … , 20 are negative, and apolynomial fit to the ACF should return an order(ord) that is not higher than 3. On the other hand,based on some simulation results in Section 4, it isnoticed that a fast decaying ( ) converges beforethe frequency = . We proposed to measure thecharacteristic of fast decaying ( ) using (i) therange of , = − 5, … , , (ii) the number ofrelative signal that is less than .001, = { ( )} <.001, = − 5, … , , and (iii) the mean of therelative signals in the interval = , … , . The

following section examines the relationship betweenthese statistics and the parameters and , andsubsequently, an alternative bandwidth selection inrelation to these parameters is suggested.
4. Monte Carlo experiment

4.1. Alternative procedure for optimum
bandwidthThis section begins with a data generationaccording to a stationary Gaussian ARFIMA (1, , 0)process with the AR parameter . The time seriesgenerated takes the form in Eq.(4). Without loss ofgenerality, the series is normalized to zero-mean.(1 − )(1 − ) = ,= 1, … , (4)Where = iid standard normal random variableBefore the optimum bandwidth can bedetermined, we examine the performance of themarkers in the plots of ACF and ( ) due to various

large smalllarge ACF: very slow decay ACF: very slow decay( ): extremely fast decay ( ): fast decaysmall ACF: slow decay ACF: no obvious decaying pattern( ): fast decay ( ): rather flat
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values of and ′ . We examine the cases with= 0, .1, … , .4 and the AR coefficient taking thevalues = 0, .1, … , .9 with sample size n = 512. Eachcombination is repeated with 1000 replicates. Ineach replicate, the markers in these plots, namely theproportion of the negative differenced auto-correlations (pn), the mean of relative signals (rs),the number of relative signals that are less than .001(Nrs), and the range are computed. Taking theaverages of all replicates, the plots are concludedwith the statistics (i) Avr_pn, (ii) Avr_rs, (iii) Avr_Nrs,and (iv) Avr_range, shown in Fig. 1). Although a shortmemory AR process with a large gives the similareffect like a long memory process with small , theycan be identified using the results in Fig.Fig. 1),which is then summarized as a combination ofmarkers shown in Table 2.

Fig. 1: Statistics related to ACF and ( ) for ARFIMA(1, ,0), n =512
Table 2: Markers to identify moderate to large

With the aim to identify the optimum bandwidthfor the ARIMA(1, , 0) process with possibly large ,we examine the relationship between the bandwidthsize m and the parameters and . To be consistent,we use the same model in Eq. (4), with the longmemory parameter  {0, .2, .4} and extend thesample sizes to n = {512, 1000, 2000}. The longmemory parameter is estimated based on BRLP,and the RMSE’s of and are calculated asfunctions of m, for m = 20, 21, … , . In eachsimulation replicate, the bandwidth size that givesthe minimum RMSE is obtained, and the average ofthese values is taken as the optimum bandwidth forthe corresponding parameter combination. Theresults of the Monte Carlo simulation are reported inFig. 2). To give a better comparison, we report theproportion of the bandwidth size n
m2 . It can be seenthat the proportion can be regarded as a function of, and it is quite consistent throughout the ′ andthe sample sizes. As such, we only need to guess thepossible values of ′ (using results of Fig.(1) andTable 2) in order to identify the search interval forthe potential optimum bandwidth. Based on Fig.(2),

we observe that when is large, the proportion ofthe bandwidth size is close to .1 and a moderatecorresponds to a proportion of the bandwidth sizeabout .3. As such, we force the cutoff frequency to besearched from the set {[. 1 ∗ ], … , } for a processwith a potentially large AR parameter, and {[. 3 ∗], … , } for the case with moderately large ARparameter. This is in line with the goal to avoid theshort-range effect which is not negligible on the lowfrequencies when is large. As spectrum is thevariance per unit frequency, a peak in ( ) isregarded as the signal that stands out from the ‘noisefloor’. Hence, in such cases, working on the searchinterval, we restrict the signals for the long-rangeeffect up to the point where the modified periodgram shows an abrupt fall. To be conservative, thecutoff frequency is set at the hump immediatelyafter this abrupt fall. Taking all the possible ′values, we suggest the rule to set the cutofffrequency as shown in Fig.(3). Note that in the eventwhen the plots do not satisfy any of the pre-definedcharacteristics, we set a higher minimum criteria( ) for the case suspected of strong AR(1) (with pn≥ .8, PACF(1)≥.8 and ord ≤ 3). This is in line withthe aim to force the bandwidth to be close to theorigin when → 1.

Fig. 2: Optimum proportion of bandwidth size for variousparameter combinationsThis paper suggests to identify the flat region inthe plot of against m around s

c

n
n




2
 , which issupposedly the number of frequencies that explainthe variation due to the long-range dependence. Theflat region is defined as the region of frequencies ofwhich are almost similar, say in a neighborhoodof three estimates with a standard deviation of lessthan 10 . The average frequency of such regiongives the optimum bandwidth, and this point willdetermine the number of frequencies to be includedin the log-period gram regression for the long-memory parameter estimation.

range Nrs rs pn ord ACF0large large ≥40 ≥40 ≤.04 ≥.8 ≤3 Nosmall [10, 40] ≤5 ≤.04 ≥.8 ≤3 Yes
moderate large [5, 30] [10, 40] ≤.04 ≥.8 ≤3 Nosmall [1, 10] ≤5 [.05, .4] <.8 >3 Yes* ACF0denotes a case where there is no auto-correlationin the first 20 lags such that ≤1.1∗ , =1,…,20where is the standarderror of the auto-correlations.
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Fig. 3: Flow chart to identify the criteria for the cutofffrequencyIn short, the procedure to identify the optimumbandwidth involves the steps below:(i) Determine the possible values for based on theplots of ACF and ( ), refer to Table 2.(ii) Identify the search interval based on the value ofsuggested in step (i). Fig.(3) is taken as a reference(ii) Determine the cutoff frequency(iv) Identify the optimum bandwidth (flat regionaround s
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n
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4.2. Performance evaluationThe proposed bandwidth selection procedure isexamined via the finite sample performance of theBRLP estimators and , following therecommendation by Andrews & Guggenberger(2003) to use a relatively small value of , such asone or two, for better finite sample performance. Theresults of these estimators using the proposedbandwidth selection is compared to that of the MSEoptimum bandwidth selection (AG method).  Theirperformances are gauged by the RMSE in the BRLPestimators.To estimate the long-memory parameter in thetime series with decaying spectral density, theperformance of using the AG method and theproposed method is examined using the datageneration explained in sub-section 4.1, by whicheach combination is run 100 times with 1000simulation replicates in sample sizes of 512 and1000, and 2000. To have a close comparison, thebiases, standard deviations, RMSE’s are calculated,and the coverage probabilities of the nominal 95%confidence intervals (CI’s) are obtained using Eq.(6.3) in the paper of (Andrews & Guggenberger,2003), except that . is replaced by . for a 95%CI. Besides, the results are checked against theminimum RMSE in the Monte Carlo simulationreplicates that examine and as functions of ,for = 20, 21, … , .In general, the proposed method works well withby consistently returning small RMSE. Fig.(4a)shows the RMSE’s of of these procedures from100 sets of experiments for the simulated ARFIMA(1, , 0) process with = .9, = .4 in sample size

= 512. The results of the proposed method areclose to the minimum RMSE in the Monte Carloreplicates. However, since a substantial amount offrequencies are filtered out, it is straight forward toknow that the parameter estimation in the case of= .9 would not be ideal, as shown by the largeRMSE in Fig.(4a) and low coverage probabilities ofthe nominal level .95 in Fig.(4b), compared to theresults of the case with = 0, = 0 in Fig.(4c) andFig.(4d). This is consistent with the remark byAndrews & Guggenberger (2003) that does notperform well for = .9. Nonetheless, the proposedmethod performs better than the MSE optimalbandwidth (AG method) in both cases, and theconfidence intervals produced are in generalconservative.

Fig. 4: RMSE and the coverage probability of and forARFIMA (1, , 0) processes respective to the bandwidthselection methods

Table 3 reports the statistics of the averages inRMSE, bias, standard deviation and the 95% CIcoverage probabilities for and using thebandwidth suggested by AG and the proposedmethod for ARIMA(1, , 0) processes with= 0, .2, .4, .6, .8, .9, = .4 and = 512. The resultsare compared with the minimum RMSE in the MonteCarlo simulation replicates. It is noted that theproposed method outperforms the MSE optimalbandwidth by consistently returning the RMSE thatis closer to the minimum RMSE.  Besides, it is notedthat as a whole, the proposed method gives smallerbias and better coverage probability, except for thecase when = .6. This is rather probable as a stronglong memory process with moderate is similar to aweak long memory process with a close to unit-rootAR. This leads to difficulty to correctly identify valuefor , and hence the search interval. On the otherhand, the MSE optimal bandwidth (AG method) isnot sensitive to the values in . This can be a majordrawback in the long-memory parameter estimationusing log-period gram regression as it is clear fromEq.(2) that function ∗ contributes to the accuracy ofthe estimation. Interestingly, it is observed thatwhen is large (.8 < < 1), the minimum RMSEvalues are in favor of for both methods ofbandwidth selection. This is rather straight forward
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as more terms are needed in the Taylor expansionwhen is large.The experiment continues to examine theperformance of the proposed bandwidth selectionmethod in the BRLP estimator as the sample sizeincreases. Fig.(5) shows the results of the proposedmethod compared to the AG method relative to theminimum RMSE for various parameter combinationsof , and sample sizes. It is observed that theproposed method consistently produces estimateswith smaller RMSE (except for the case when = .6),and the improvement in the cases with → 1 issignificant as the sample size increases.
Table 3: Statistics of and for ARFIMA (1, , 0) with= .4 and = 512

Fig. 5: Difference in average RMSE and the average of theminimum RMSE of the proposed method and the MSEoptimal bandwidth method for ARFIMA (1, , 0) withvarious parameter combinations for sample sizes of= 512 , = 1000 and = 2000.
5. SummaryLiterature shows that the BRLP estimatorperforms well relative to the standard log-periodgram regression estimator. However, itsperformance is largely dependent on the bandwidthselection . The MSE optimal bandwidth selection(AG method) is not ideal as it depends on theestimation of an unknown which is a non-parametricproblem. Working on the notion that spectrum is thevariance per unit frequency, where a peak in the

spectrum represents relatively high variance in therespective frequency band, this paper proposed amethod to determine the optimum bandwidth basedon the magnitude of the modified period gram. Basedon the simulation results, it is observed thatdiscarding the high frequencies that have less than5% of the long memory information gives theoptimum bandwidth in terms of minimum RMSE andbetter CI coverage probability, but processes withclose-to-unit-root AR require a strident truncation tothe bandwidth size in order to avoid the shortmemory contamination. This paper proposes somemarkers to identify the characteristics of the shortand long range dependence using the plots of ACFand modified period gram. The Monte Carlosimulation results verify that by including anappropriate number of frequencies in the BLRPmodel, an estimator with small bias yet notcausing much increase in the variance can beobtained. We believe that this technique haspotential applications wherever the long memoryparameter estimation is of interest. The future workmay include setting the optimum bandwidth for thelong memory process that has an element of movingaverage.
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