Journal of Scientific Research and Development 2 (10): 86-92, 2015

Available online at www.jsrad.org
ISSN 1115-7569
© 2015 JSRAD

Bandwidth selection method for bias-reduced log-period gram estimator in decaying

spectral density

G.LC.Yap*, KW.Liew

Department of Applied Mathematics, the University of Nottingham Malaysia Campus, Semenyih, Malaysia

Abstract: Long-memory parameter estimation using bias-reduced log-period gram regression (BRLP) is proven
efficient as it eliminates the first and higher order of biases of the (Geweke & Porter-Hudak, 1983) (GPH) estimator.
Nonetheless, its performance relies largely on the frequency bandwidth and the order of estimation. Literature
suggests a data-dependent plug-in method for selecting the frequency bandwidth that minimizes the asymptotic
mean-squared error (MSE). The optimal rate of convergence to zero of the MSE is faster than that of the GPH and the
other semi-parametric estimators when the normalized spectrum at zero is sufficiently smooth. However, this
choice of bandwidth significantly increases the MSE’s over the finite sample minimum MSEs due to the non-
parametric estimation problem in the unknown term within the plug-in method. To obtain the optimum bandwidth
in the decaying spectral density, this paper suggests an alternative approach that relies on spectral analysis, with
the idea of low pass filter applied in signal processing. Monte Carlo simulation results for stationary ARFIMA (1, d,
0) processes show that the proposed method for the bandwidth selection perform well relative to the MSE optimal

choice of bandwidth, and the estimation performance is improved with the sample size.
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1. Introduction

Semi-parametric estimation procedures are
common in the time series analysis of financial
measurements sampled at high frequencies (Barros
et al, 2014; Bollerslev et al, 2013; Garvey &
Gallagher, 2013). Following these methods, the long-
range characteristics (low frequency behavior) of the
time series can be estimated without the knowledge
of the short-range (high frequency) structure. One of
the popular tools for long-memory estimation in
empirical research is log-period gram regression
(LP) proposed by (Geweke & Porter-Hudak, 1983;
Robinson, 1995) (GPH) due to its simple
implementation, pivotal asymptotic normality and
robustness as a result of the local condition (Arteche
& Orbe, 2009).

The GPH estimator ﬁ! is the least squares estimate
of the long memory parameter d, in the regression
model that takes the first m harmonics of the logged
period gram against a simple function of Fourier
frequency. It has been criticized due to its finite-
sample bias (Agiakloglou et al., 1993). To overcome
this, Andrews & Guggenberger (2003) proposed a
bias-reduced log-period gram estimator (BRLP) il
which is the same as & except that it includes
additional regressors in the form of the Fourier
frequencies to the power 2kfork =1,...7r Z% in
the pseudo-regression model. The performance of
the estimator is usually evaluated based on the mean
squared error (MSE) or root mean-squared error

* Corresponding Author.

86

(RMSE), of which estimator with the minimal MSE
(or RMSE) is preferred. The bandwidth m plays an
important role on the performance ofﬂ,._ A large
bandwidth reduces the variance at the cost of
increased bias, and the estimates of the memory
parameter vary significantly with the choice of m. To
balance the squared bias and variance, an optimal
bandwidth, that is, an m value that minimizes the
MSE or RMSE is sought.

There are basically three approaches to
determine optimal bandwidth, namely the plug-in
method that minimizes an asymptotic approximation
of the MSE ( Hurvich & Deo, 1999), the adaptive LP
(Giraitis, Robinson, & Samarov, 2000) that uses an
adaptive LP that adapt to an unknown local to zero
spectral smoothness, and a bootstrap-based
bandwidth choice (Arteche & Orbe, 2009) that
minimizes a bootstrap MSE. The adaptive LP method
does not produce optimal bandwidth but it only
offers bandwidths with optimal growth rate which
can be changed arbitrarily, whilst the bootstrap-
based method is rather tedious as the optimal
bandwidth is obtained by searching for the minimum
bootstrap MSE amongst the points within a
predefined interval of bandwidths. The plug-in
method is easy to implement but it is usually not
adequate as it depends on unknowns to be estimated
(Andrews & Guggenberger, 2003; Arteche, 2004;
Delgado & Robinson, 1996; Henry & Robinson, 1996;
Henry, 2001). This paper suggests an alternative
approach to identify the optimum bandwidth for the
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long-memory parameter estimation using the BRLP
estimator. This approach examines the long- and
short-range effect on the spectral density of which
optimal bandwidth is determined such that the
short-range effect and the noise are filtered out. The
following section reviews the BRLP model. Section 3
considers the proposed method for the bandwidth
selection. Section 4 provides a simulation study in
the finite sample, and section 5 offers the concluding
remarks.

2. Literature review

The spectral density of a semi-parametric model
for a stationary Gaussian long-memory time series
{:£=1,.. 1} in a neighborhood of zero frequency
isgivenby

féhy =4 & ©)

Where d is the long-memory parameter and ‘|" )
is an even, positive continuous function on [ ]
with 0 <[ (0y<oco. It determines the high
frequencies properties of the series, relating to the
short-term correlation structure. A model that takes
a fractional difference of order d, a ji-order
autoregressive and fj-order moving average,
abbreviated as ARFIMA (pili) introduced by
Granger & Joyeux (1980) and Hosking (1981) is a
special case of long-range process satisfying Eq. (1).
The long-memory parameter can be estimated using
the first m (m < n) period grams in the log-period
gram regression proposed by Geweke & Porter-
Hudak (1983) (GPH). Robinson (1995) writes this
model in the form of Eq.(2).

£ [m”l

log £(47) = (log f* (0y — ) + el X[.4;] + log|

IAQ)
+ & ©)
Where 5
i) = gl Yt oxliz® for f=1..m
A= :%' X[ 4) = =2bg| 4, & = log] :'jillj + L, and

. = 0.577216 ... is the Euler constant.

The GPH estimator d is the least squares
estimator of ¢f in the regression model Eq. (2). The

dominant bias comes from the term log| ',r;':nJ:I To
eliminate this bias term, regressors }.f.",:r'z 1, are
added to the pseudo-regression model Eq.(2), giving
rise to the bias-reduced log-period gram regression
(BRLP) (Andrews & Guggenberger, 2003). Assuming
[ (&) is smooth of order % at zero for some s > 1
BRLP is written in Eq.(3).
log f(4;) = (log [ (0) — ) +dl X[ 4]
|||I|}|'E_|,.-:-

b o [P

¢ (2.'::')!#-" MR R

k=1
Jj=1,..m 3)

Where
F'J. = error term other than &
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b, ::7logf'(}~)ku

[-]is the greatest integer function

Similar to the GPH estimator, ﬁ!,. i5s the least
squares estimator of the coefficient on X[.4;] in the
BRLP model. The problem of long-memory
parameter estimation lies in the uncertain number of
frequencies needed to estimate the behavior of‘|" (4)
for A=+0. The optimal choice of the bandwidth
proposed by Andrews & Guggenberger (2003)
(hence called AG method) is the m value that
minimizes the asymptotic MSE of &,.. However, this
method involves an unknown by, that can only be
estimated non-parametrically, and its rate of
convergence is quite slow especially when ¥ > 0. As
a result, it may lead to a large MSE in &,.. (Jn the other
hand, there are other challenges in the bandwidth
selection, especially when there is a sufficient
density of individuals with close-to-unit-root
behavior which produces an aggregate long memory
(Robinson, 2003). Alternative to AG method,
graphical method by Tagqu & Teverovsky (1996)
seems reasonable. This method argues that at large
bandwidth m, the estimates of ¢f are incorrect due to
the short-range effects. As m decreases, the short-
range effects disappear and ﬁ!,. ghiould represent the
true long-memory dependence. Nonetheless, this
causes instability in the estimates of ¢ due to
insufficient frequencies for the log-period gram
regression. Hence, the optimum bandwidth is
identified as a point from the flat region in the plot of
ﬁ!,. against m. Unfortunately, as argued by Henry
(2001), the flat region in the plot is not always
obvious. As such, to overcome these difficulties, a
more efficient approach for the data-dependent
choice of bandwidth is desired.

3. Bandwidth selection for BRLP using the
spectral analysis and low pass filter

This paper suggests collecting the Fourier
frequencies near the origin that have significant
spectrum. The spectrum of a time series is the
distribution of variance of the series as a function of
frequency (Chatfield, 2004). A peak in the spectrum
represents relatively high variance in the respective
frequency band, whilst frequencies with small
spectrum contain no significant signal and a flat
spectrum indicates that the variance is evenly
distributed over the frequencies. A time series with
long-range characteristic has positive
autocorrelation with low-frequency spectrum, which
means the spectral density has a decaying pattern
with the variance tends to be higher at the low
frequencies. Hence, an appropriate amount of low
frequencies need to be determined for &,. such that
the frequency band contains sufficient information
for the long-range characteristic, yet it is not
contaminated with the signals from the short-
memory traits.

To improve the spectral estimation, this paper
uses the average modified period gram 5(4) (Welch,
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1967) to estimate the spectral density. For real-
valued time series, 5(4) is produced with a

. 4l _
frequency resolution of =g . where nfjt=

max{256, the next power of 2 greater than the length
of the segments}. In other words, spectral density is
estimated by 54y, £ = 0,1,...,1%, where 17 = "';’rr|.
5(4) is used to identify the frequency band close to
origin that contains large spectrums so that
sufficient information can be assembled for &,. in the
BRLP model.

As long-memory parameter determines the low
frequencies properties of a series, this paper
proposes the use of a low pass filter (Van de Vegte,
2002). This requires a cutoff frequency A~ to be
identified, and all frequencies of the input signal in
the interval |4| < A are passed with equal gain and
all the frequencies outside this interval (which are
related to the short-term correlation structure) are
completely filtered out (Shenoi, 2006). As such, the
accuracy of &,. relies heavily on the choice of the
cutoff frequency. The procedure to identify the cutoff
frequency is detailed below.

Working on 5(4), the procedure begins with an
arbitrary potential optimum frequency JEI_.,,. Based on
the remark by Qu (2011), frequencies in the

neighborhood of C suggest the possibility of

v
distinguishing between the true and the spurious

Table 1.

long-memory from the spectral domain. This leads to
setting a potential stop point p-r1=|‘rr"'lr|, which
v

corresponds to bandwidth i, = | yii| Suggisted by
Geweke & Porter-Hudak (1983). Working from %
and regress up to i — 5, the cutoff frequency Ay is
determined as the first frequency that exceeds the
minimum criteria, 7l = mings(da)y +
krange{5(da)}, @ =po—5,.. .15 where k is a
proportion factor. As the spectral density of a long-
memory process is a decreasing function, this is
somewhat equivalent to discarding the signal that
has less than k% of the information of the long
memory process. This rule seems reasonable to give
an appropriate cutoff frequency, as the error in the
log-period gram regression increases for frequencies
far from origin. However, following Arteche & Orbe
(2009), it is noted that the enlargement of the error
is significant when the characteristic polynomial of
the autoregressive (AR) process has a root that is
close to unity. This indicates that some intervention
to this rule is needed. As these cases are associated
with slow decaying auto-correlation and monotonic
decaying spectral density, the characteristics in ACF
and %(4) plots need to be identified. An interaction of
long memory parameter (¢f) and the AR parameter
(r,l'J) gives the characteristics as described in

Table 1: Characteristics in ACF and.5(A) due to the parametersif andft

large

small

large

small

():fast decay

ACF: slow decay

ACF: very slow decay
( ): extremely fast decay

ACF: very slow decay
( ): fast decay

ACF: no obvious decaying pattern
( ):rather flat

The auto-correlation in a rapid decaying ACF
converges to zero after a few low-order lags but a
very slow decaying ACF is likely to have significant
auto-correlations even after 10 lags. By checking on
the ACF up to 20 lags, we define an ACF as very slow
decay if none of the auto-correlations is less than
1.1*standard error of the ACF. The process with
possibly large r,l'J can be identified as the one that
depicts rather a monotonic decay, that is, most of the
differences  between the consecutive auto-
correlations 7; —7j-4,{ = 2, ..., 20 are negative, and a
polynomial fit to the ACF should return an order
(ord) that is not higher than 3. On the other hand,
based on some simulation results in Section 4, it is
noticed that a fast decaying 5(4) converges before

the frequency A = ri We proposed to measure the

characteristic of fast decaying 5(A)using (i) the

range of 5[4;), f =po—5,..,7% (i) the number of
T

) I~ mansdy

001, y=pa-—>5,.. ¥ and (iii) the mean of the

relative signals in the interval j= 37|, ... []. The

relative signal that is less than .001, ¥4
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following section examines the relationship between
these statistics and the parameters ¢ and i and
subsequently, an alternative bandwidth selection in
relation to these parameters is suggested.

4. Monte Carlo experiment

4.1. Alternative for

bandwidth

procedure optimum

This section begins with a data generation
according to a stationary Gaussian ARFIMA (1,:!, 0)
process with the AR parameter r||'1 The time series
generated takes the form in Eqg.(4). Without loss of
generality, the series is normalized to zero-mean.

A -l - .f.)”'!ni = &,
t=1.n 4)

Where £ = iid standard normal random variable

Before the optimum bandwidth can be
determined, we examine the performance of the
markers in the plots of ACF and 5(A) due to various
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values of il.'s and (f5. We examine the cases with
i1=0,.1,..,4 and the AR coefficient taking the
values ifi=0,.1,...,.9 with sample size n = 512. Each
combination is repeated with 1000 replicates. In
each replicate, the markers in these plots, namely the
proportion of the negative differenced auto-
correlations (pn), the mean of relative signals (rs),
the number of relative signals that are less than .001
(Nys), and the range are computed. Taking the
averages of all replicates, the plots are concluded
with the statistics (i) Avr_pn, (ii) Avr_rs, (iii) Avr_Ns,
and (iv) Avr_range, shown in Fig. 1). Although a short
memory AR process with a large rll':l gives the similar
effect like a long memory process with small ¢, they
can be identified using the results in Fig.Fig. 1),
which is then summarized as a combination of
markers shown in Table 2.

Fig. 1: Statistics related to ACF and.5(4) for ARFIMA

(1e10), n=512

Table 2: Markers to identify moderate to large qfr

rE M s m ad Ak

| Lap =0 =0 <o =8 <3 N

T @l 04 S5 <0 =8 S8 ¥

Colae B W4 =¢ =8 <3 N

nobae, gl (1] <5 [B4 <8 >3 ¥
*Adh cittesacewaetaeisroapaddinintefit Dlegsachtts <11 =1.., Dwee  istredarchd

enordtreatoanddias

With the aim to identify the optimum bandwidth
for the ARIMA(L, i, 0) process with possibly large ify
we examine the relationship between the bandwidth
size m and the parameters gfiand ¢l To be consistent,
we use the same model in Eqg. (4), with the long
memory parameter ¢ € {0, .2, .4} and extend the
sample sizes to n = {512, 1000, 2000} The long
memory parameter ¢l is estimated based on BRLP,
and the RMSE's of ﬁ'-, and ﬂg are calculated as

functions of m, for m :20,21,...,|r:r_|. In each

simulation replicate, the bandwidth size that gives
the minimum RMSE is obtained, and the average of
these values is taken as the optimum bandwidth for
the corresponding parameter combination. The
results of the Monte Carlo simulation are reported in
Fig. 2). To give a better comparison, we report the

proportion of the bandwidth size It can be seen
that the proportion can be regarded as a function of
i1 and it is quite consistent throughout the ifs and
the sample sizes. As such, we only need to guess the
possible values of rll':r_*-r (using results of Fig.(1) and
Table 2) in order to identify the search interval for
the potential optimum bandwidth. Based on Fig.(2),

89

we observe that when r,I'J is large, the proportion of
the bandwidth size is close to .1 and a moderate i
corresponds to a proportion of the bandwidth size
about .3. As such, we force the cutoff frequency to be
searched from the set {[.1 %], ..., ¥} for a process
with a potentially large AR parameter, and {[. 3
5], ... 1%} for the case with moderately large AR
parameter. This is in line with the goal to avoid the
short-range effect which is not negligible on the low
frequencies when r,l': is large. As spectrum is the
variance per unit frequency, a peak in 5(4) is
regarded as the signal that stands out from the ‘noise
floor’. Hence, in such cases, working on the search
interval, we restrict the signals for the long-range
effect up to the point where the modified period
gram shows an abrupt fall. To be conservative, the
cutoff frequency A-is set at the hump immediately
after this abrupt fall. Taking all the possible s
values, we suggest the rule to set the cutoff
frequency as shown in Fig.(3). Note that in the event
when the plots do not satisfy any of the pre-defined
characteristics, we set a higher minimum criteria
(cri) for the case suspected of strong AR(1) (with pn
= .8, PACF(1)=.8 and ord < 3). This is in line with
the aim to force the bandwidth to be close to the
origin when ¢l - 1.

Fig. 2: Optimum proportion of bandwidth size for various
parameter combinations

This paper suggests to identify the flat region in

the plot of &,. against m around T, which is
supposedly the number of frequencies that explain
the variation due to the long-range dependence. The
flat region is defined as the region of frequencies of
which &,. are almost similar, say in a neighborhood
of three estimates with a standard deviation of less
than 1072 The average frequency of such region
gives the optimum bandwidth, and this point will
determine the number of frequencies to be included
in the log-period gram regression for the long-
memory parameter estimation.
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Fig. 3: Flow chart to identify the criteria for the cutoff
frequency

In short, the procedure to identify the optimum
bandwidth involves the steps below:
(i) Determine the possible values for |'||'.I based on the
plots of ACF and 5(4), refer to Table 2.
(i) ldentify the search interval based on the value of
r,l'Jsuggested in step (i). Fig.(3) is taken as a reference
(ii) Determine the cutoff frequency
(iv) Identify the optimum bandwidth (flat region

around ==+ )
4.2. Performance evaluation

The proposed bandwidth selection procedure is
examined via the finite sample performance of the
BRLP estimators ﬁ!-, and r{; following  the
recommendation by Andrews & Guggenberger
(2003) to use a relatively small value of ¥, such as
one or two, for better finite sample performance. The
results of these estimators using the proposed
bandwidth selection is compared to that of the MSE
optimum bandwidth selection (AG method). Their
performances are gauged by the RMSE in the BRLP
estimators.

To estimate the long-memory parameter in the
time series with decaying spectral density, the
performance of ﬁ!,. using the AG method and the
proposed method is examined using the data
generation explained in sub-section 4.1, by which
each combination is run 100 times with 1000
simulation replicates in sample sizes of 512 and
1000, and 2000. To have a close comparison, the
biases, standard deviations, RMSE’s are calculated,
and the coverage probabilities of the nominal 95%
confidence intervals (CI's) are obtained using Eq.
(6.3) in the paper of (Andrews & Guggenberger,
2003), except that Zgr is replaced by Zg7r for a 95%
Cl. Besides, the results are checked against the
minimum RMSE in the Monte Carlo simulation
replicates that examine ﬁ!-, and ﬁ!g as functions of 11,
formm = 20,21, ... |':r_|

In general, the proposed method works well with
ﬂ,. by consistently returning small RMSE. Fig.(4a)
shows the RMSE’s of ﬁ!g of these procedures from

100 sets of experiments for the simulated ARFIMA
(1,cd,0) process with gfi=9,il = 4 in sample size
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1 =512. The results of the proposed method are
close to the minimum RMSE in the Monte Carlo
replicates. However, since a substantial amount of
frequencies are filtered out, it is straight forward to
know that the parameter estimation in the case of
rII'J= .9 would not be ideal, as shown by the large
RMSE in Fig.(4a) and low coverage probabilities of
the nominal level .95 in Fig.(4b), compared to the
results of the case with gi= 0,il = 0 in Fig.(4c) and
Fig.(4d). This is consistent with the remark by
Andrews & Guggenberger (2003) that &,. does not
perform well for rII'J= 9. Nonetheless, the proposed
method performs better than the MSE optimal
bandwidth (AG method) in both cases, and the

confidence intervals produced are in general
conservative.
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Fig. 4: RMSE and the coverage probability of i yandid = for
ARFIMA (1, ¢, 0) processes respective to the bandwidth
selection methods

Table 3 reports the statistics of the averages in
RMSE, bias, standard deviation and the 95% ClI
coverage probabilities for &-j ani &2 using the
bandwidth suggested by AG and the proposed
method for ARIMA(1,¢10) processes with
i1=0,.2,4,6,.8.9 il =.4 and 11=512. The results
are compared with the minimum RMSE in the Monte
Carlo simulation replicates. It is noted that the
proposed method outperforms the MSE optimal
bandwidth by consistently returning the RMSE that
is closer to the minimum RMSE. Besides, it is noted
that as a whole, the proposed method gives smaller
bias and better coverage probability, except for the
case when |'||'.I = .6. This is rather probable as a strong
long memory process with moderate r,l'J is similar to a
weak long memory process with a close to unit-root
AR. This leads to difficulty to correctly identify value
for ¢fi and hence the search interval. On the other
hand, the MSE optimal bandwidth (AG method) is
not sensitive to the values in gft This can be a major
drawback in the long-memory parameter estimation
using log-period gram regression as it is clear from
Eq.(2) that function f contributes to the accuracy of
the estimation. Interestingly, it is observed that
when i1 is large (.8 <fi< 1), the minimum RMSE
values are in favor of dz far both methods of
bandwidth selection. This is rather straight forward
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as more terms are needed in the Taylor expansion
when iiis large.

The experiment continues to examine the
performance of the proposed bandwidth selection
method in the BRLP estimator as the sample size
increases. Fig.(5) shows the results of the proposed
method compared to the AG method relative to the
minimum RMSE for various parameter combinations
of ¢hiid and sample sizes. It is observed that the
proposed method consistently produces estimates
with smaller RMSE (except for the case when if1=.6),
and the improvement in the cases with ¢fi- 1 is
significant as the sample size increases.

Table 3: Statistics of il andid = for ARFIMA (1,, 0) with
if = 4and11 =512

IE optirrel banwidth (AGrethod)  Proposed rethod
—~ - MnReg Agm Ay Ag AgSd Ay  Ag Awg Ag  AgSd Awg
Bias  Dev %% m RVBE Bas Dev 9B%
a a
0 1 0657 N9 1262 0144 1253 9308 147 (0979 (0136 .0969 9399
2 08 110 1483 0184 1471 9421 148 1261 0105 1256 9479
2 1 0864 N 1259 0195 1243 9348 150 .1114* 0323 1066 8749
2 0878 110 1479 0193 1465 943 150 1229 (0069 1226 9581
4 1 1131 N 1333 0374 1279 9163 117 1282 0642 1109 9014
2 1114 109 1508 0247 1487 9352 118 142 - 142 9516
0003
6 1 1807 % 1645 05 1A 8065 73 1682 079 148 877
2 1482 109 1577 0626 1448 917 74 1914 014 1911 fei3
8 1 233 8 3044 2678 1446 4148 56 257 201 16 7354
2 27 106 2601 2075 1566 65 58 2323 102 2085 9176
9 1 A 8 5178 4978 142 0585 58 4501 4295 1621 229%
2 336 104 4624 4335 1609 1829 59 3642 2062 2118 6733
. L PTG ien AT 1
1
. i
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Fig. 5: Difference in average RMSE and the average of the
minimum RMSE of the proposed method and the MSE
optimal bandwidth method for ARFIMA (1, 0) with

various parameter combinations for sample sizes of
#1=512,# = 1000 and #1 = 2000.

5. Summary

Literature shows that the BRLP estimator &,.
performs well relative to the standard log-period
gram  regression  estimator.  However, its
performance is largely dependent on the bandwidth
selection 11. The MSE optimal bandwidth selection
(AG method) is not ideal as it depends on the
estimation of an unknown which is a non-parametric
problem. Working on the notion that spectrum is the
variance per unit frequency, where a peak in the
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spectrum represents relatively high variance in the
respective frequency band, this paper proposed a
method to determine the optimum bandwidth based
on the magnitude of the modified period gram. Based
on the simulation results, it is observed that
discarding the high frequencies that have less than
5% of the long memory information gives the
optimum bandwidth in terms of minimum RMSE and
better Cl coverage probability, but processes with
close-to-unit-root AR require a strident truncation to
the bandwidth size in order to avoid the short
memory contamination. This paper proposes some
markers to identify the characteristics of the short
and long range dependence using the plots of ACF
and modified period gram. The Monte Carlo
simulation results verify that by including an
appropriate number of frequencies in the BLRP
model, an estimator fﬂ,. with small bias yet not
causing much increase in the variance can be
obtained. We believe that this technique has
potential applications wherever the long memory
parameter estimation is of interest. The future work
may include setting the optimum bandwidth for the
long memory process that has an element of moving
average.
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